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SUMMARY

A nondimensional model of microstructurally short crack growth in creep
is developed based on a detailed observation of the creep fracture process of
304 stainless steel. In order to deal with the scatter of small crack growth
rate data caused by microstructural inhomogeneity, a random variable technique
is used in the model. A cumulative probability of the crack length at an arbi-
tary time, G(a,t), and that of the time when a crack reaches an arbitary
length, F(%,a), are obtained numerically by means of a Monte Carlo method.
G(a,t) and F(%,a) are the probabilities for a single crack. However, multi-
ple cracks generally initiate on the surface of a smooth specimen from the
early stage of creep life to the final stage. Taking into account the multi-

.ple crack initiations, the actual crack length distribution observed on the

surface of a specimen is predicted by the combination of probabilities for a
single crack. The prediction shows a fairly good agreement with the experimen-
tal result for creep of 304 stainless steel at 923 K. The probability of creep
life is obtained from an assumption that creep fracture takes place when the
longest crack reaches a critical tength. The observed and predicted scatter of
the life is fairly small for the specimens tested. :

INTRODUCTION

In designing mechanical components for high temperature applications, the
engineer must consider the failure mechanism at such temperature. Accumula-
tion of creep damage often causes failure at high temperature. The creep
damage usually consists of multiple cracks or cavities. For creep life predic-
tion, it is necessary to evaluate the damage accumulation based on the synthe-
sis of crack growth and/or cavity growth.

Creep fracture mechanisms were experimentally investigated in detail using
304 stainless steel smooth specimen in previous works (refs. 1 to 4). Observa-
tions revealed that: (1) cracks continuously initiated at the surface from the
early stage of 1ife to the final stage; (2) the cracks appear to grow randomly
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randomly owing to the effect of local microstructural inhomogeneities; and (3)
crack coalescence and necking of the specimen (reduction of area) accelerated
drastically the growth in the final stage of life. Eventually, the creep life
is governed by the crack initiation and growth.

The existing fracture mechanics law for long creep crack growth (refs. §
to 11) is not directly applicable to the random growth of microstructurally
short cracks in creep. Few studies have been reported on the short creep crack
growth (ref. 12) because of the difficulities in interpreting the randomness.
The authors previously proposed a model of the microstructurally short creep
crack growth (ref. 12). 1In the model, a random variable technique was used to
deal with the distribution of crack growth data.

In this paper, the model is recast into a nondimensional form for predic-
tion of the creep crack growth. This greatly reduces the numerical calcula-
tions required. Taking into account the continuous initiation of cracks and
the failure crack length the cumulative probability of creep life is predicted
by a Monte Carlo simulation method on the basis of the nondimensional model.

NOMENCLATURE

a half crack length

ac half crack length at which the fluctuation of crack growth rate
blends into long crack behavior (fig. 1(b))

af critical half crack length for creep rupture

B coefficient of creep power law

C coefficient of the relation between crack growth rate and crack
length in the long crack growth law

Ce coefficient of the relation between crack growth rate and creep
J-integral in the long crack law

D grain boundary length between two adjacent triple points

Dav average of D

da/dt crack growth rate
(da/dt)| crack growth rate at a triple point (fig. 1(b))

(da/dt)y crack growth rate at a medium point between adjacent triple points
(fig. 1(b))

F(E,a) cumulative probability of f(t,a) (probability that a crack reaches
length a before t)

f(t,a probability dengity function of a time t at the instant a crack

reaches length a



cumulative probability of g(a,t) (probability that crack length is
shorter than a at )

probability density function of a crack length a at time ¢t

nondimensional length between crack tip and grain boundary triple
point (fig. 2)

creep J-integral
number of cracks per unit surface area (crack density)
time rate of change of K(t)

constants in the relation between crack growth rate and crack length
for a small crack (fig. 2)

constants in the relation between crack growth rate and crack length
for a small crack (fig. 2)

boundary - crack shape correction factor
number of cracks at t = ¥, (= K(E)S)

constants in the relation between crack growth rate and crack length
for a small crack (fig. 2)

constants in the relation between crack growth rate and crack length
for a small crack (fig. 2)

exponent of power creep law
cumulative probability of creep life
specimen surface area

time

crack initiation time

creep life

function of n (Eq. (4))

positive integers

1RGPS (Eg. (17) or Eq. (A-3))

te/8 (Eq. (A-4))
stress

applied stress




é(a,t) cumulative probability of a crack length a for multiple cracks case
at a time t

Note: bar over variables indiates nondimensional form.

SMALL CRACK GROWTH MODEL

Figures 1(a) and (b) show schematic growth curves and growth rate of
microstructurally short cracks initiated on the surface of a smooth specimen
of 304 stainless steel under creep conditions (ref. 3). The characteristics
of the crack growth are summarized as follows.

(1) Cracks initiate at grain boundary triple points or carbide precipi-
tates and grow at high rates along grain boundaries but decelerate as they
approach triple points or sharp bends of grain boundaries.

(2) The relation between crack growth rate and crack length is greatly
dependent on individual cracks. Fluctuation in crack growth rate is large for
cracks smaller than a few multiples of the grain size, ac.

(3) The degree of fluctuation diminishes as the crack length becomes
Tonger and blends into the scatter band for "long-crack" behavior.

A stochastic model of microstructurally short crack growth was proposed
based on the experimental results in a previous paper (ref. 12). The model is
summarized briefly as follows.

(1) The crack length, a, and the grain boundary length between two adja-
cent tripie points, D, are the projected lengths on the plane perpendicular to
the applied stress axis. )

(2) The grain boundary length between two adjacent triple points, D, is a
random variable with a normal distribution.

(3) The intergranular crack growth rate alternates between an upper and a
lower peak depending on the location of crack tip as shown in figures 1(b) and
2.

(4) The upper and Tower peaks of the crack growth rate are modeled by ran-
dom variables of logarithmic normal distributions. Their medians and 90 per-
cent confidence bounds are listed in table I. This procedure gives reasonable
crack growth data as compared with the experimental curves (ref. 12).

(5) The crack growth rate for a long crack is proportional to the crack
length.

Q.
o7}

= Ca . qp

Q.
“t

(6) The crack growth rate between grain boundary triple points is given by
the equations shown in figure 2.



The creep crack growth rate, da/dt, has a good correlation with a creep
J-integral (C*-parameter or modified J-integral), J* (refs. 5 to 11). For many
materials, da/dt is proportional to J*.

9% - ¢ J* (2)

where Cc 1is a material constant (ref. 13). J* for a finite crack in an
infinite plate is evaluated by (refs. 1 and 14)

I* = MJa(n)Bo;+]a (3)
w(n) = 3.85 L=V, T 4
VA

where Mj 1is the boundary - crack shape correction factor, og 1is the applied
stress, and B and n are the coefficient and the exponent Of creep power law
(Norton's law), respectively. Substituting equation (3) into equation (2), we
obtain

n+l
CCMJa(n)Bog a

ajo
+l

= Ca . (5

The crack length, a, the time, t, and the stress, o, are nondimensional-
ized as follows,

1= (6)
Dav
T =CoBolt (7)
cg g
pu o_
o = Cco = Cccg (og) (8)

where Day is the average of the grain boundary length between two adjacent
triple points. On the basis of equations (6) to (8), the relation between the
nondimensional crack growth rate, da/dt, and the nondimensional creep
J-integral, J*, gives

(9

a o
e+l i
]

9.}
|

where

C = Myaln) . (10)




It should be noted that the nondimensional crack growth law is independent of
the applied stress. The random variables used for the upper and lower crack
growth rates are listed in table I while the normalized variables are listed

in table II. We are also able to normalize the quantities, D, h, my, Ly, mp,
and Ly shown in figure 2. Therefore, any of the results can be derived from
the nondimensional equations. Since the results are independent of the applied
stress, both of the probabilities of G(a,t) and F(%t,a) at any stress and at
any time (to be described in the fo]low1ng section) can be expressed by the
nondimensional analyses. Results can be converted back 1nto the dimensional
form through equations (6) to (8).

PROBABILITY OF CRACK GROWTH

The crack growth model is stochastic so that the growth curve has a proba-
bilistic distribution as shown schematically in figure 3. g(a,t) is a proba-
bility dens1ty function of crack length at a time t after crack initiation,
and f(t,a) is a probability density function of time at the instant a crack
reaches 1ength a. Their cumulative probabilities are represented by G(a,t)
and F(t,a). G was partially discussed in the previous work (ref. 12), how-
ever, F is introduced and discussed here for the first time.

G(a,t) and F(%,a) are numerically given by the following procedure
(Monte Carlo method) as shown in figure 4 on the basis of the model:

(1) Generate random numbers.

(2) Determine random variables D, (da/dt)y and (da/db)(.

(3) Calculate the a - t relation for a crack.

(4) Repeat 1 to 3 and get the a - t relations for many cracks.

Figure 5 shows the change of G(a,t) calculated by a simulation of 300
cracks. The constants used in the simulation are those derived from the creep
behavior of 304 stainless steel at 923 K (refs. 2, 11, and 12) and are listed
in table III. The convergence of simulation results was confirmed by a prelim-
inary calculation except at the two extremes where G(a,t) is nearly equal to
zero or one (ref. 12). G(a,t) can be physically 1nterpreted as the probabil-
ity that a crack length is shorter than a at time t. It becomes clear from
figure 5 that the distributions change very little within the region G(3,%) <
0.5, while they are strongly depending on t for G(a,t) > 0.8. This result
suggests that the first grain boundary triple point has a high probability of
blocking the crack growth and that the crack grows faster once it passes
through the triple point. Similar tendencies were found in experiments
(refs. 1 and 3).

Figure 6 shows F(%,a) which is obtained by the simulation of 30 000
cracks in order to clarify the distribution near F(t,a) = 0. F(%,3) is the
probability that the time when a crack length reaches a is shorter than t.
The distribution shows that there is a difference in the shorter t region,
while in the longer t region differences disappear. The difference at the
shorter t' affects the probability of creep life.



CRACK LENGTH DISTRIBUTION

Multiple cracks generally initiate continuously on the surface of a smooth
specimen during the entire creep test. The actual distribution of crack
lengths observed at a given time t 1is brought on not only by the distribu-
tion of crack growth rates but aiso by the difference in the crack initiation
time. G(a,t) obtained in the previous section is the cumulative probability
of crack length at t after the initiation of a single crack (or that for mul-
tiple cracks initiated at the same time). Therefore, it is necessary for the
prediction of the actual crack length distribution to be coupled with the dis-
tribution for crack initiation.

The cumulative probability for an actual crack distribution, ®(a,t), at a
time t is predicted by the following equation:

t
3t = J G(a,t - Ei) k(fi)dfi/K(f) an
0

where K(t) is the number of cracks per unit surface area (i.e., crack densi-
ty) at time &, t; 1is a nondimensional crack initiation time, and k(1) is
the time rate of change of K(t). &(a,t) can be interpreted as the probabil-

ity that the crack lengths are shorter than a at a time a. The numer of

cracks initiated from time t to t + dt is given as

dK(t) = ——= dt = k(b)dt . 2)

Experimental observations have shown that K(%) was nearly proportional to %
for conditions of creep (refs. 1 and 2). Thus, k(t) is constant and equation
(11) can be written in the form

t
®3,B = 1| 6@t - £)dE, (13)
t Jo

The lines shown in figure 7 are the predicted probabilities of crack
length for a smooth specimen of 304 stainless steel at 923 K. Figures 7(a)
and (b) are the probabilities at the medium creep 1ife and near the end of
creep life, respectively. The figures also include the actual distribution
obtained from a creep test in air (ref. 2). The predictions agree well with

the test results. Similar successful results are obtained at other times t
in air as well as the experimental results (ref. 2) in vacuum,

CREEP LIFE OF SMOOTH SPECIMEN

Creep tests of 304 stainless steel revealed that the creep failure of
smooth specimens took place soon after the longest crack reached a critical
crack length, af (ref. 2). Crack coalescence and tertiary creep (reduction of
area) brought on the drastic acceleration of crack growth and the unstable
fracture. For the tests conducted in the previous work (ref. 2), the value



of af was about 0.15 mm. This implies that the growth of microstructurally
short cracks govern the majority of the creep fracture.

Assuming a critical crack length for rupture, the cumulative probability
of creep life, P(t,), becomes equivalent to the probability that the Tongest
crack reaches the length af. Here, multiple crack initiations must be taken
into consideration. The derivation of P(t,) from F(t,a) is described as
follows. The probability that a crack initiated at time tj does not reach
ar at time t s given by [1 - F (¥t - %, ag)l. Then,

m
IT[ {1 - F(t - fj,if)} is the probability that none of the cracks initiated at
j=1
t1,t2, ... ty, reach afF at t. P(%,), therefore, is given by
m
Pt =1 - JI {1 - F(Eg - j,af)} (14)
j=1
m = K(fr)S (15)

Again, assuming k(t) is constant, equation (14) is converted into

m

PEy =1 - J1 {1 - F ((m - At,§f>$ (16)
3=1

At = a7

k(tr)S

where S is the specimen surface area.

P(tr) is sensitive to the distribution near F(%,af) = 0, as shown in fig-
ure 8 wherein the detailed distribution is given by the simulation of 150 000
cracks. P(%p) shown in figure 9 is obtained from the distribution of figure 8
and equation (16). To simplify the solution of equation (16), an approximate
estimation is used as described in the appendix. Figure 9 reveals that as the
number of cracks, K(t,)S, increases, the creep life decreases and the scatter
becomes smaller. In other words, the specimen surface area available for
cracking will affect the creep life. Figure 10 shows the relationship between
the nondimensional creep life and the number of cracks at P(t,) = 0.1, 0.5,
and 0.9. The life changes considerably in the range of K(t,)S < 3000, but
little in the range of 5000 ¢ k(t)S < 10 000. In the creep tests carried out
previously, K(ty) is about 20 mm—¢ independent of the applied stress (ref. 2).
Hence, the scale of S ‘can be given and is shown on the upper side of
figure 10. The real time scale at several stresses are also drawn at the
right side of the same figure. The scatter of creep life is very small in the
range of 250 mm2 < S < 500 mm?.
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S is equal to 320 mmZ for the tested plate specimen of 304 stainless
steel (width, thickness, and gauge length are 12, 4, and 10 mm, respectively)
so that K(t;)S becomes 6400. The band in figure 11 shows the relationship
between applied stress and predicted creep life for 0.1 ¢ P(ty) < 0.9 and
K(t()S = 6400. Also shown in figure 11 are the actual experimental results of
creep rupture data (refs. 2 and 15). The predictions show good agreement with
the data.

The growth of surface cracks governs creep fracture in this relatively
short time and high stress regime. However, it is expected that internal
cracking plays an important role in the fracture process at lower stresses and
longer times. Life prediction at lower stress may have to be modified to
account for internal initiation and crack growth.

CONCLUSION

A nondimensional model of microstructually small crack for creep life pre-
diction is proposed. The probability distributions of crack lengths and creep
life are predicted based on the model. The results obtained are summarized as
follows.

1. The stochastic model of small crack growth is generalized. In the
model, the scatter of crack growth rate owing to microstructual inhomogeneity
is represented by means of random variables. The nondimensional model gives a
general probability of crack growth independent of applied stress.

2. The cumulative probability of crack length at a time t, G(a,t), and
the cumulative probability of time when a crack reaches length a, F(%,a), are
‘calculated by means of the Monte Carlo simutation method.

3. Taking into account the multiple crack initiations, the cumulative
probability of crack length for the multiple cracks, ¢(a,t), is obtained from
G(a,t). The predictions agree well with the actual distribution of crack
lengths observed on a specimen of 304 stainless steel tested in creep at 923 K.

4. The cumulative probability of creep life, P(ty), is derived by assum-
ing that the longest crack is responsible for the ultimate fracture. Predic-
tions and experimental results are in good agreement.



APPENDIX A

To simplify the solution of equation (16), an approximation is discussed
in this section.

The following relation is given because (1 - F(%,a)) is a nonincreasing
function against t.

B-1 Y m
;1 - F (¢ - j)Af1,Ef)$ < TI %1 _F ((m , j)AE,§f>§
j=0 j=1
B Y
< II 31 - F ((B - j)Af],Ef)} (A-1)
j=1
Bey=m (A-2)
t
z r
At = P (A-3)
t
r
Aty = - (A-4)
‘Equation (A-1) is reduced to
y P v
{1 - F(fr,éf)} II gl - F ((rs - j)AT:],af)$ < I1 ;1 - F ((m - j)Af,Ef)$
j=1 j=1
B Y
< I ;1 - F ((rs _ j)Af],§f>§ (A-5)
j=1
If B and vy are chosen as {1 - F(fr,i)}Y is nearly equal to one, the
following relation is given.
B Y
;1 - F <(B - j)At],af>§
j=1
m
= §1 - F ((m - j)Af,§f>§ = P(fr) (A-6)
j=1

10



In this study, P(¥,) is calculated by choosing B and y as 0.9 <
{1 - F(Ee, 0} ¢ 1.

1
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TABLE I. — LOG NORMAL DISTRIBUTION OF CRACK GROWTH RATE IN THE DIMENSIONAL MODEL

(€ = CMyaln)Bog™ 1.3

azac a < ac
Median | Upper confidence Median Upper confidence
Timit, limit,
90 percent 90 percent
(da/dt)y | V2Ca 2Ca V/2Ca(a/a)0-414 2Ca,
(dasde) | Ca/v2 ca Caclasac)0-414//2 ca

TABLE II. - LOG NORMAL DISTRIBUTION OF CRACK GROWTH RATE IN THE
NONDIMENSIONAL MODEL

[C = Myaln), 3 = a/B,,, 3, = ao/Dyy-]

aza, a<a,
Median Upper confidence Median Upper confidence
Timit, Timit,
90 percent 90 percent
(dazdb)y | V2Ca 2ca V/2Ca(3/3)0-414 2Ca,
(dazdt), | Can/2 [ C3c(373) 041402 ta

TABLE III. - CONSTANTS FOR THE CALCULATION OF CREEP IN 304
STAINLESS STEEL AT 923 K IN AIR

Constant Value Note
B 1.37x10-18 €. = Bo" Norton's law
Ec: Creep strain rate th-1
n 7. ol Stress [MPa]
My 0.51 For semi-circular surface crack
ac 0.1 nm
Day 0.02 mm Average of grain boundary length
between two adjacent triple points
Dgt 0.005 mm Standard deviation of grain boundary
length between two adjacent tripie points
[ 0.0096 MPa™T
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FIGURE 9. - CUMULATIVE PROBABILITY OF NONDIMENSIONAL
LIFE PREDICTED BASED ON THE MODEL OF MICROSTRUCTUALLY
SHORT CRACK GROWTH.
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